Complete the table of circular function values below for the 5 common angles in the first quadrant and on the positive x - and y - axes.

SCORE: _____/6 PTS (1 POINT DEDUCTED FOR EACH ERROR)

heta (in radians)	$\sin heta$	$\cos heta$
0)
공	1/2	3
五 4	<u>12</u>	<u>C</u> 2
73	<u>V3</u> 2	1 2
77)	

Use the table above to fill in the blanks below. Simplify all answers (including rationalizing denominators). Write "UNDEFINED" if the expression has no value.

SCORE: _____/ 4 PTS

$$[a] \csc \frac{\pi}{2} = \frac{1}{\sqrt{1 + \frac{\pi}{2}}} = \frac{1}{\sqrt{1 + \frac{\pi}{2}}}$$

[b]
$$\cot 0 = \underline{U}\underline{NDEFINED}$$
 $\frac{\cos 0}{\sin 0} = \frac{1}{0}$

[c]
$$\sec \frac{\pi}{3} = \frac{2}{\cos \frac{\pi}{3}} = \frac{1}{2}$$

[d]
$$\tan \frac{\pi}{6} = \frac{\sqrt{3}}{3} \qquad \frac{\sin \frac{\pi}{6}}{\cos \frac{\pi}{6}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$$

Suppose $\sin t = -\frac{15}{17}$ and $\cos t = \frac{8}{17}$. Fill in the blanks below. Simplify all answers.

SCORE: _____/ 4 PTS

[a]
$$\sec t = \frac{17}{8}$$
 $\frac{1}{\cos t} = \frac{1}{17}$

$$[b] \sec(-t) = \frac{17}{8} = \sec t$$

$$[c] \cot t = \frac{-8}{15} \frac{\cos t}{\sin t} = \frac{8}{15}$$

$$[d] \sin(-t) = \frac{15}{17} = -5m t$$

[a]
$$-\frac{16\pi}{3}$$
 is co-terminal with $\frac{2}{3}\pi$ (NOTE: Your answer must be between 0 and 2π) $-53\pi + 3(2\pi)$

SCORE: _____ / 5 PTS

[b]
$$\sin\left(-\frac{16\pi}{3}\right) = \frac{\sqrt{3}}{2}$$
LIKE SIN $\frac{2\pi}{3}$
AND POSITIVE [c] The complement of $\frac{2\pi}{7}$ radians is $\frac{3\pi}{14}$
 $\frac{7\pi}{2} - \frac{2\pi}{7}$
SINCE IN Q_2 (WHERE $y > 0$)

$$(16\pi)$$
 $\frac{\sqrt{3}}{3}$ LIME

radians $72 * \frac{7\pi}{180}$ [e] $\frac{7\pi}{30}$ radians = $\frac{42}{42}$ degrees $\frac{7\pi}{30} * \frac{180}{180}$

[a] The central angle is
$$\frac{4}{3}$$
 radians. $S = r\Theta \rightarrow r = \frac{12mm}{9mm}$

The area of the intercepted sector is
$$574 \text{ mm}^2$$
. $A = \frac{1}{2}r^2\Theta = \frac{1}{2}(9 \text{ mm})^2(\frac{4}{3})$

[c] If an object is moving around the circle at a linear speed of 63 mm/s,

its angular speed is

| RAPPIANS | V=VW -> W =
$$\frac{\sqrt{3}}{9} = \frac{63 \text{ mm/s}}{9 \text{ mm}}$$